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Background: Table-based Question Answering
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1896 Athens  Greece
1900 Paris France 24
1904 St. Louis USA 12

2004 Athens  Greece 201
2008 Beijing  China 204

oy

Greece held its last Summer
Olympics in which year?
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Previous Work: Reinforcement Learning

Obtain rewards by comparing execution results of sampled SQL queries with golden
answers to train a text-to-SQL semantic parser. Hard to scale to complex scenarios.
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Previous Work: Table Parsing

Predict answer by selecting table cell values and optionally applying an aggregation
operator to the selected region. Flexibility is limited.
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Our Proposal: Generative Language Model

We formulate the task of table-based question answering as answer generation,
and leverages generative language models (e.g., BART) to output autoregressively.
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Preliminary Result: Models Are Data-Hungry
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Motivation: Program as Proxy

Programming Context : Database Program:
SELECT City WHERE
1896 Athens  Greece Country = France ORDER BY
1900 Paris France 24 Year ASC LIMIT 1
1904 St. Louis USA 12 '
v
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Our Proposal: SOL Execution Pre-training

Pre-training a model to mimic the behavior of a symbolic execution engine.
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Our Proposal: SOL Execution Pre-training

If we train a model to mimic the SQL query execution procedure over databases,
we believe it learns latent programmatic operations from the execution engine.

take a table @ sample an executable SQL query
Y C Count Nati
SELECT City WHERE Country = France ORDER BY Year ASCLIMIT 1
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Experimental Result: SOTA Across Benchmarks
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Experimental Result: Cost-Effective Pre-training

Fine-tuning Performance Pre-training Corpus (Million)
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Compared with TaBERT, 2% of corpus yields 2% improvement!
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Take Away: Pre-training without Real Data

When performing continual pre-training, instead of mining a large noisy web
corpus, we can also try to synthesize an accurate and small corpus.
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Take Away: Pre-training without Language Modeling

When performing continual pre-training, instead of performing the general-
purpose language modeling, we can also try to simulate the specialized skill.
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Take Away: Pre-training without Natural Language

When performing continual pre-training for natural language tasks, instead of
natural language, we can also try to leverage programs.

start_link(name, opts \\ [1) do

We introduce a new language representa- start_tink( , {namc}, opts)
tion model called BERT, which stands for '
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine- d er, {01d_nick, new nicid}, _fron, {_nane, us
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.
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